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The oxygen-evolving complex (OEC) of photosystem Il (PSII) 10 100
catalyzes photosynthetic oxidation of water to molecular oxygen. Temperature(K)
Although the precise structure of the OEC is unknown, spectro- _. ,
scopic gnd magnetic studies suggest that it contains a high-vsalencer?g:;iéa ';;ergp:rié%resﬁsxﬁ]rédiagebgfsttgﬁ E{ngfﬁeoﬂﬁfcﬁéﬁ‘ll |
Q%gn%tlc?lly coupled tetranuc_:lear mangaﬁegg)Raggregaté. xpression. Inset: Isothermal magnetizatiorl@@Ar'4)s at 2.00 K )

and e ecftron paramagnetic resonance ( . )_ SpECtrOSCO_py ObLnd best fit ) of the S= 5/2 state. The dashed line corresponds to the
the S oxidation state reveals three characteristic signals associateds i ouin function expected for an isolatel= 5/2 state with no zero-
with the manganese aggregate: a-24 line signal centered at  fe|q splitting.
g = 2, signals atg > 5° and a signal centered gt= 4.157
Conversion of theg = 4.1 form to the $multiline signal upon
annealing at 195 K’ and conversion of the multiline form to the

g = 4.1 form with near-IR irradiatiotf substantiated the propo$al
that both signals came from the same cluster. ke4.1 signal Previously, we showed by solution magnetic susceptibility

X . o1 g . (
has been attributed to either an ax@s#+ 3/2°12 or near-rhombic measurement&at 295 K that one-electron reduction of [yOy-

(E/D ~ 1/3) S= 5/2 multiplet’*~15 Recent analysis of the low- _ 1
temperature magnetization of the OEC of PSII is consistent with E;-?-ei)]gcég%r;zéc%o(;l)f)gts ;[?éac?am? wﬂ] l;) (t:ohalrggle??rsom

— H — _ 1 p— 16
anS= 5/2 state wittD = 1.7 (or 1'05.) cmrande/D = 0.25. ferromagnetic coupling to overall moderate antiferromagnetic
Here we report the magnetic behavior and EPR analysis of the coupling within the manganesexo corel® Analysis of the

first tetranuclear, high-valence manganesgo aggregate with ma : S
= ’ . gnetic susceptibility measurements on a powdered sample of
anS= 5/2 ground state, [MiOs(bpeaj]** (1)."** This pseudo- 2(ClOg4)4 with a two-J Heisenberg exchange Hamiltonian confirms

tetrahedral arrangement of M(Mn'V); ions is proposed as a spin
topological model for theg = 4.1 S state of the PSII water
oxidase manganese cluster.
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Figure 2. Spin topology and assignment of exchange coupling constants
for Mn—Mn interactions ofl. The spin label $designates the Mhion,

and §, $, and S designate the MH ions, with corresponding atom
labels Mn(3), Mn(1), Mn(2), and Mn(4), respectively.

similar*® oxo ligand bridges ir2 (Ja= 10.2 cnT! andJs = 90.0
cm, for type A and B, respectively). Antiferromagnetic interac-
tions observed for the Mn(2Mn(3) and Mn(3>-Mn(4) pairs

are mediated through oxygen atoms in equatorial coordination to

Mn(3). A ferromagnetic interaction between MntyIn(3) is
consistent with axial coordination of oxygen to Mng3¥3Rapid
decrease of T below 10 K can be attributed to the presence of
zero-field splitting. TheS = 5/2 ground state of and the zero-
field splitting have been confirmed by the field dependence of
the magnetization measured at 2.00 K (Figure 1, inset). The field
dependence of the magnetization has been adequately fit@s an
= 5/2 ion with anE/D ratio of 0.20 andD = 1.1 cnt1.2* We
estimate thatD(S= 5/2)| = 1.1 cm! corresponds t¢gD(Mn'")|
= 5.1 cnT!,2>which compares well with values obtained for other
Mn"' compoundg®

The EPR spectrum df(ClO,); (Figure 3) is dominated by a
broad signal centered at about 1600g5+(4.1), with a low field
component ofy ~ 9.127 The simulation of the EPR signal af
(Figure 3) indicates a ground spin manifold®f 5/2 with E/D
= 0.20. The signals a = 9.1 and 4.1 are from the lowest and
first excited Kramers doublets, respectively. The simulation was
calculated with diagonalization of the spin Hamiltonieh= D(S?
— §S + 1)/3) + E(S2 — S? + pB-g-S and polycrystalline
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Figure 3. X-band EPR spectrum of an acetonitrile solutionL¢€10,);
measured at 30 K) and least-squares simulatiort)( Inset: Comparison
of the X-band EPR spectra of (d){ClO4)s; and (b) PSII enriched
membranes (9.484 GHz, 11.5 mg Chl/mg in buffer, 10 K). Sample was
illuminated for 6 min at 195 K Microwave power and modulation
amplitude: 2 mW and 3.2 G, and 20 mW and 16 G, I(€10,); and
PSII samples, respectively.

from an S= 3/2712 or S = 5/2 state/3>1® Figure 3 (inset)
illustrates the strong resemblance between the low-temperature
X-band spectrum of and theg = 4.1 OEC signat? In addition,

the D value determined here fdk (1.1 cnm?) is close to that
estimated for the OEC (1.7 c.1® The {Mn,Og}3" core of1,
described here as a M@Mn'V); pseudotetrahedron, also exhibits
oxidation state parity with our preferred assignment of the S
state?®° Thus, we demonstrate experimentally for the first time
here using the synthetic compléxthat theg = 4.1 S state of
PSII may arise from the spin topology shown in Figure 2: a
pseudotetrahedral array of Mn ions with three ferromagnetically
coupled Mn(lV) ions and a Mn(lll) ion with opposing spin
alignment?
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summation over a uniform spherical angular array. The line shape Acknowledgment. We thank Prof. H. Weihe for a copy of the EPR

is accurately modeled with a Gaussian distributioB/D of width
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